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“This talk
Mﬂ aim 1S to convince You that Vvirtual

double cateaor'nes are fundamental n cateaonj
theory , and to give youw some Sense for
where l:\r\e,:.) May appear Ta your own wolk.

To this end, | will:
e Recall the concept of o Virtwal douvle cat.
e Introduce a range of motivatinj examoples

e Discuss some opplications of their theory



Parl: L. Mul&icatejories



Mu\ticqteaon'es oS generalised Categories

—W\e cor\cepl: of a Mu\ticateaor:j 1S tgpicalls
presented as a genemlisakion of a catesorg in which
morphisms may have mMultiory nput.

X, X

»

Y

Ever5 mu\t'uCad:e,ﬁorg has own uno\erlﬁinﬂ C“teﬂ‘"ﬁ
of wnary mMuitimorphisms.



Mu\ticateaon‘es oS 9enera|ised monoidal Categories

Mu\t%catejoriﬁ May also be considered
genera\isak'\ov\s of monoidal categories n which

morphisMs A ® - @ X, Y are represented bﬂ

mu\timorp\n'\SMS XypeooyXa—Y,

From this perspective, it i§ natural to view a
Mu\ticateaors 0SS Structwure on an W\o\erlyi/\s

category , rather than o stond-alone Structuwre.



Mu\ticateaon‘es versuS monoidal Categories
Everj rmownoidal catesorg nduce§ a M\A'tiCGtesond.

Converse.lﬁ) the multicatesories that correspond to
ronoidal categories rmay be identified by a

wniversaol propert& .

Definition [Herrmida ‘00]

A multicatesonj M IS representable when, for every
X,y Xn € ML, there is X, ®---@Xn€M such that

—_
MW, X, %8, Y 5 2) 2 MW, X, 0. 8%a ¥ . 2)



Free monoidal categories

There is a 2-adjunction

F
Multicat , L~ StrMonCatg

U
which is lax-idempotent, monadic, and comonadic

[Herm'\da ‘00 - Elmendorf & Mandell ‘oq].

Conseguently, the full sub-2-category of Multicat
Spanned by the representable mMukicategofies 1S
bieguivalen t to MonCat,.



Aa\v an'\:aﬁes of rMult) Ca\tea ories

In many respects, multicategories are more well-
behaved than monoidal categorie.s,

o It is often simpler to construct a multicategory
ond  prove WS representable than to construct

a mMonoidal category o\'.rec.l:!g.
° l"\u\ticategories are closed under taking subcatejories,

e Multicat is complete and cocomplete, unlike

MonCat .
« Multicat odmits many exponentials.



Pact T. Categorification



C_&Eeso_r_i.gi cation

The two perspectives on multicategories — i.e. as
stand-alone structwes; or structwe on a category
— lend themselves to Qifferent Senera\iSationS.

For mnstance, there are rMany situations In
which we would like to view a m™Multicategory

oS Some 2-dimensional structwe with one

object, in the same way that we may view

monoidal cateson'es as one- Ob)ect b'\catesories,



Mu\t"\o'\catesor'\es

V'.e.wi.«s a Mult'ccate.aors as a Stand-alone
structuwre, the natuwral Cateaorif:Catiov\ 18 the
notion of rultibicategory (a.k.a. Virtual

lo'\catesorg), which  has

e objects ¢ —>° o
7 N\

o |-cells \_/

o Multiafd 2- cells



Virtmq\ double Ca\:eaodes

V'uewins a Mult'ccate,aor3 as Structwe on aq
Category, Multibi LATLE ries are unsuitable,
since  they lack an uno\erlaina c,ad'.esond.

From this perS?ective, the natwral
Catesorie(?:Catiov\ s the notion of virtual

double category,



Virtum.\ double CaL’cegorie.S

A Virtual double Catesonj [Burron" '?l] COMPNSQ&
e o collection of objects
e fFor each pair of objects, a collection
of tight rmorphismy  X—>Y
o fFor eachh pair of objects, a collection

of loose morphisms e+ X'

e for each frame, o collection of cells

x,e—-‘—x,efu-‘-- eff-'-x,. ‘
£ 9 Lf



Virth\ double ca’ceaories
M

° ide/\t'ltj and Ccomposite i:'\s\'\t rMo rphisms,

formms a categorg
P

o identity cells h‘"_j‘ '

.(__;_.

e Compodite cell§




Parl'. M. Ex
aMPIeS



Special _cases

1. A VDC with no loese MorrhiSMS (Inence no
Ce\|$) 1S pre.ciSel:j a cateaorg.

2. A VDC with one object and one l:'.ah’c
morphism 1S precisely a Multicategory.

3. A VDC with no non-‘.de/\titg {;;ah’c Morfl«asms

is precisely a rultibicategory.



Cospans [Burroni ‘71]

For every category Z’ there 1§ a VDC (fcsPam(S)

whose ca\:esors of objects ana t’.aht rmorphisms 'S

£, for whidh a loose rMorphism X —— Y 1S & Cospan
X— A —Y

ond for which a cell (left) is a Famils of
morphisms in- € (right) Making the diagram Commute.

T Pn
Xoe-?-'—X|4-—P|-...e-a-X,. ‘ Xo”P“"X.-’Pzé----e—Xn
F’L Lf .(.‘L - :l 2..°: lf‘
Y Y’ Y_____—>-’Bf YI




Spans

For _every mtzgorﬂ E with pullbacks, there is a VDC
$pom(€) whose ca\‘.esorﬂ of objects ana tiah{: rmorphisms
'S Z, for which a loose rorphiSm X — Y IS & Span

Xe— A—Y
ond for wwich a cell (left) is a span Mmorphis m

(r;shl;) fromn the iterated pullback. P
Sy N

2 Pa
X,e-?-'—X.A-—P'—""""Xn C Koe PoX & P X,
£l Vf £1 \ T ¢
N e—————V" Yeeoo B —Y'



Catesories and. Aistributors [Burron'\ “-','|]

There 1s & VOC Dist for which

. an object is a (locally small) cateqory
e a tight morphism s a functor
« o loose morphism X =27 s a distributor, 1.e.

a functor VP, % — Set

. T P"‘
e o cell XOGP._X'@_._P ...e-p—)(,.‘
) Vf
Y e0——— V'

, )
IS & natweal Fam'\\ﬂ of functions

[ o(xe, ), ..., guldaa, Xw) —> (8, £ (x) }
X



Matrices [Leinster ‘04]

For o Mu\{:'\catesorﬂ (\/, there is a voc V-Mat
N which an object 15 a class, a tight rorphism S

o Function, a loose mMorphism X —7Y IS a

{:Wv\'\\y {P(g’x) '3 c\’}xe)(,ye‘/ ond for which a cell

2 Pa
XOE"::’X,G—';—"'Q"‘XV\ :
0 X
Vo b— vy’
: Y

s a family of rmultimorphisms in Vv
[ o(xe,x, ..., gul(daa, Xw) —> (8, £ (x) }
p 4



Internal and enriched Categories

For every cateqgory & with pullbacks, there is a
voc Dist(E) of ca{e,sories internal to £, their

functors, distributors, and natural transformations.

For every mMonoidal category oV there is a
vpe V-Dist of Ca’ceaories enriched n V, their

functors, distributors, and natural tronsformations.



Double cateaoﬁg_s

There is & VOC Dbl for which

. an object i a weak double categqory

e Q t%ghk mMorphim 1§ a strict Functor

« o loose Morphism X =7 is a Light
o\'\S{’ribut’or, 1.e. & lax Fu/\ctor

yoPt x X — $f>OLV\

e a cell is a transformation.

There s a similar VDC WDC of VDCs.



Pact TV. Representalboility



Loose. identities and loose composites

A VDC does not admit ideatity or composite
loose morphisms in general. However, their existence

rmay be characterised by o univer sal property.

e A loose identity on on object X comprises a
X (1,1
loose morphism X&+—X and a nullary cell

X X

N o W

X e—+— X
% (v,1)

such that ‘Maep‘ma out of %(u1) is the same as
MGP?V\S out OQ r\oth'.ns‘.




Loose i1dentities and loose compos;tes

e A loose comeosite of a chain (|€.“:)

e, Cn P, O -0
XOH"°"&""X“ Xo@——-i——X,\
Comprises a loose rmorphisM (ﬁs\nt) and a cell

e P

XO H“ c°° é“‘- Xv\

“ YP\O"’I n "

Xo ‘-'—"'__'X
PO --Of

such that ‘Maepma out of RO -0 L s the

)

same aS M“??"‘ﬂ out of @, ..., e, .



Norma\\'\’cj ond reeresen\:a\o'\\itj

A VDC s called normal when it admits all
loose identities, and representoble when it adnmits
o\l loose composites.

e A VDC with loose identitieS and no other
loose morphisms is precisely a 2-category.

* More generally, every normal VDC has an
underlying 2-category.

* A representable VDC s precisely a weak
double category.



Composites n exa\mpl_e_s_

o Cos‘oam(i) 'S a\wads normal, but admits
l:'mau-a COMFOSHZQS on\ﬂ when & has pu&\r\outS.

. $oan(E) is always representable.

e V-Mot admits composites if °V admits
Coproducts preserved by the tensor product.

e Dist 1 q\waujs normal, but onlg admits the
Composite £ ——>D —=>2 f D is small.



Composites n exampl_e_s_

° [Dist(i) 1S o\\wajs normal, but admits
binary composites only when & admits

reflexive ccezua\'\sef‘s preserved bj biﬂwj
Proo\ucts.
« V-Dist is a\wajs norrmal, but only admits
the Composite £ ——>D —=>¢ if V admits a
Certain coend.

e Dbl is normal, but not representable.



B_eeresen\:a\o'\ \ itj

In Maﬂﬂ Si{:ua{:ions, we are interested n weak
double categories, where cormposites of loose

morphisms do exist, but estab\iskins coherence
involves tedious or intricate calculations.

In these situations, it is often simpler to First
construct a VDC, and then orove it is

represen table .

This s particu\arﬂ true when c.ow\f:osition 1S
defined via a universal property (i.e. usually),



Lax ‘and:ors [D PP '06]

VDCs oand weak double Co.te.sarie.s are related \oj

a lox- idempotent pseudoaot:,uncfionz

F
B 4

v
Consezuent\g, the Sub-‘l—catesoru c(: VDbl Sf»amneo\ by

the representable VDCs is bieguivaleat to WDbI , the
Z-mtegora of weak double Catesories and lox
.Fumc{ors.

Unlike WDb| , VDbl is very well-behaved: for
instance, it s complete and cocomplete.



Park V. Apflica{:ions



Parl: Y Apflica{:ions
Monads and bimodules



Monads ond bimoduled

One of the most imgortmt Cconstructions 1n

two - dimensional category theory is the Mod
construction, which takes a bicategory K and

produces a hew 'OiCQtQSOrU, whose objects are
Mmonads 1IN 'f( oand whose I-cells S——)T ore

S-T bimodules.

Example. Mod(Span) is the bicategory of small
categories and distributors.



Short COM'V\SS with Mod

Unfortunatel y, there oare several drawbacks.
e We cannot captwe functors between categories,

e ¢ is reguired to hove local reflexive

Co e?/ualiSerS .

e Mod does not admit o convenjent wuniversal
eroperts,



—w\e, Mod construction [B- ‘?l > L. ‘04']

For any VDC 3, there is a VOC Mod(X) whose

o objed:s are Mmonods N X
° ngc MOIPMSMS are monad Morp\n'\sms

e loose mMorphisms are mMmonad bimodules

o Cells are monad transformation§

Exam‘ol_e__g
o Mod($pam (£)) = Dist(e)

* Mod(V-Mat) = V-D;ist
(V\Of‘e to Fa\\ous)

e



Cofree nocmal VODCs

_me Mod consStruction odmits o Very useful
uwmversal property.

“Theorem [Cruttwell & Shulmoa ‘|0]
— V

_ll7\ere IS a pseudooxo\\]u/\ctio/\’. VDbI,‘ﬁ_") VDb

) Mod
go ro“onr:j [B e ’\abou]

Normal |ox F‘N\Ctor_s into [Dis{; coerSPond to

arb'\tmr3 X% FW\ctor_s into $ean .



Parl: Y A P?l ications

Enrichment



Enrichment of categories

In what Structures may we enrich a category?
e The classical answer is a monoidal category
[Bénabou '6S : Maranda ‘65].
e More senem\\g) we mMay enrich in a
M\A\t‘\ca\tesorg [Lauv\bek '6"] .

o lWalters observed that sheaves mMay be viewed
as cotegories ennched in a bicategory [‘81].
e |Leinstec Sa\ve exaw\fale& of ennchment 1n

vickwual douwble Catesor;es’ anad arqu.S this 1S
ma\x\modlﬂ 3ev\e,m\ [‘02].



Enrichment in a VDC

An advantage of enrichment in a VDC is that
the base of enrichment VY forms the same

structure as W-Dist, This allows ws to itecrate
the construction of enriched Categories,

(-)-Dist : VDbl — VDbl

It is natucal to wonder if this Forms oart
of a (two - dimensional) monad on VDbl and,
¢ so, what its algebras ace.



Enciched categories as a free cocompletion

“Theorem [Arkar]
(-)-Dist ‘FOfMS o \ax-idempotent 2-monad on

VDb, | whose a\jebms are the normal VDCs

admitting  collages of enriched C&tejories (a kind
of two - dimensional colimit).

This senera\\nes an eacrlier theorem of Carner &
Shulman [‘lé], which imposes constraints on V.



Park V. Apflica{:ions

Ceneralised Mu\l:&ca\:eaories



Cenecalised multi categories

A Burroni introduced a framework for Stuo\yinﬂ

ge,nera«\ifedk forms of internal rulticategories, n

which the domains of rultimorphisms are not
necessarily lists of objects, but are instead

para\meterise& bg o monad ['?l].

Civzn (7 N Monaol T on O cateﬂor:j S with pu\\ba\cks,
o T-category IS O Span eguipped with

S ¢ .
TECo — C. -i-) ca monad Structure



VDCs os genem\ise,o\ Multicateqories

J

T-cat eﬂonﬁ
CG{: esor\j

Multicategora

\hle

This gives further evidence that VDCGs are the
aeeropnate Cau\:eson(l'catuon ol Mu\t.categones



A Frouv\ework For 3enera\\iserk Mull:ical:eaorieS

Cruttwell & Shulman ['lO] extended Burroni’s
SQttinS (as well as later work [Lein,ster ‘04.;
Hermida‘OO]) to the Settir\s of a m™Monad on

0. virtual double Cad:esor:j.

QT
X = Lki(T) — nMod(lLki(T))

“This permity them to obtain not just 3enemlised
Multicategories and functors, but also bimodules.



Parl: Y A P?l ications

Universal properties



_A___ 9000\ settin9 For‘t ZDr un'\verSaulit«j

We have already seen two examples where
fe\axins o,ssumpl:ior\S, ona workif\s with VDCs

cather than b'\cate.sorie,s or double catesories,
made 1t possible to obtain mMuch cleaner

Wniversal properties.
e Mod (cofree normal VDC)

e Dist (free collage cocompletion)
These are far from isolated instances.



ReSEr'\d:io NS

In many VDCs, we can restrict a loose
MorphisM along a pair of tight Morphisms:

(f,
A—f-age—?l——c_g_s—g o Aep__.—glo

For mstamce n [D|St such a restriction 1§

gven by (a\ d) — p(F(a) 3(0\3)

Restriction satisfies an a\p?rOPr'\ate
unwersal ‘oroPe,ri:ﬁ.



Virtual e,q/tii?ments

A virtual ezuipment 1S a VDC with
 loose identitieS (i.e. @ normal VDC)

e restriction§.

Examples. Cospan(E), $oan(€), Dist(€), V-Dist.

In o virtual eguipment, every bight rorphisSm

£ . £
A — B admits o Companion A——> B ana

& conjoint B—> A,



The universal pro?gtﬂ of Cospan’

Theorem [Dawsw\, Paré & Pronk ‘10]

Fér each categora S, the VDC QOSqu\(E)
is the free virtual eguipment on T,

Dual\g, $pov\(i) is the free °‘ co-virtual

Co- ezuipment' on .

[Po\a(i) admits an ama\\ogov\s co-virtual] wunijversal
property [Arkor & Clarke].



Parl: Y Apflica{:ions
Yoneda theorj



\/onedq ‘U'\eorj For a\oulee catAesories

—F\e Yoneda lemma s of 3reat '\Mportamce N
both one- and two- dimensional category tlr\eortj,

|t is thws desicable to hove such a result For
d&b\e CQtCSOﬂCS. Pafé ir\\lest\gated. this 29\3350.4)

determining that the appropriate notion of presheaf
on O weawx double catesora D is a lax Functor

However, lax fuactors do not assemble into a weak
dowble category, but merely a victual double category,



g?_(?o.«er\ﬁa\ki\i‘:j
Unlike the category of categories, the category of
MU\HCQtCﬂOf.\ES 'S not cartesian closed .

However, the ex?onen{:iab\e Mu\ticatesories admit
on e\eaamt characterisation: theg are ‘oreciSelﬂ

the ?l‘cw\onoida‘ Categorieg [PiSami ‘\4:].

This a'wes a conceptual explanation for the

convolution monoidal structure on functor Categories

described by Day [‘70]



Ex ?onent'\ab\e VD (s

We Moy carty out o Swmilar amax\jsis For VDCs,
in their caeacitﬂ as "”\0"‘3°°b3“t Multicategor ey’

“Theorem [Arkor]

Ever:j reeresen\:able vDC (i.e. weak double categocy)
IS ex?onent'\able.. Furthermore, Modb&’A) 1S

eguivalent to Pacé’s VDC \.Laxx(/A,)X),

This exhibits & universal proee,rhj that
Significantly simplifies the Yoneda theory.



(_ovwolud:ion For double Cad:ejor'\es

Behr, Mellies & Zeilberse.r showed that, for each
Small weak double c.a\teﬂors D, the fuactor
category [D.,Set] obtains a Colax monoidal
structure [‘23].

D
In fact, this is precisely (2 Set) , Where 7 Set
S the one-object VDC 9‘\ven b& de,looping the
ronoidal category Set.



Part Y AP?HCM’.BO'\S
"—ormal categor 3 t\f\eora



A f:roliferal:ion of category theories

“There ore Mony Flovours of category theory.

° Ofd.lnafj ° Mono‘da‘ e Mult-
* Enriched e Fibred e Double
. Internal o Indexed e Poacameterised

In each, we Find the same kinds of definitions

and theorems,
. Presheaves & cocompletions * Monadicitg

e Adjointness . Presen\:ab‘\lity



Forma\ catesc?_rd th eor&

E)rmal category theors (FCT) applies the Pl-\iloSofhy

of category theors to category t\r\e,ora tselfl, bﬁ

identifainﬂ chaced structure n each of these
examples, to provide a  Common fromework in which

to establish category theoretic theorems just once,
thereby obtaining the specific variants by
specialising to exomples.



FfO\Me.woFkS ‘For CT

Several approaches to FCT have been proposed
in the litecature.

o 2-cateqories with properties (e.g. limits, closure)
[Gray ‘74]

e Yoneda structures (motivated by the presheaf
construction) [Street & Walters ‘78]

e Proarrow e%ugpments (motivated by diStributorS)
[\o\)ood ‘82]




Fraxme.works for FCT

. La\x—ia\m?otent pseudomor\a\oks (motivated by
free cocompletions) [Burge & Funk *99]

e Victual ezuiements (Moti\mteo\ bg distributors)
[Cruttwell & Shuiman ‘10]

o Amamgnteak virtual ezuiements (Motivated bg
distributo rS) [ Kouo\e.nbw'j ' ?_4-]



Virtual e%q_\?rv\ents

Recall that a victwal eguipment (VE) is a VDC
ao\m\ttin3 loose jdentities and restrictions.

—w\-‘s Sett'\ﬂg has Q Nnumber OF Mval\tajes For

FCT over Previowns Settinss,
» |t does not require Comma objectS or
cockesian closure (e.g. “V-(Ea\t).

« |t does not require a presheaf construction
(e.g. ([at(i) oc V- Cat for V not C\oseds,

. It does not require free cocompletions,



Virtuwal e%u}_'\PMQntS

- It does not reguire distributors to be
composable (e.g. |ar3e. categoriel, V-Cat for

V¥ not cocomplete, double cqtesorid\

also share these odvantagesl, but

Au\smented. VEs
ta N Some aspe,ctg) while reo\uc{nj

‘ncrease complex:



FCT with virtual eguipments

ln the last decade, a S'\gv\ificamt amount of FCT
has been o\e,ve\opeol n the Set{:if\g of VEs.

. Limits and colimts
o (Relative) mMonads and (relative) adjunctions

o Monad’\citﬂ
o Nerve theorem

o Presheaf constructions

° _\—ota\\’\tg



The Forma\ theor:j of relative monads

Two Fundanex\ta\ concepts in Category theoly are
rmonads and Adjuactions. Their theory has been

well developed in ordinary category theory, but
much less So in other settings, including in

enriched cate.sorj theonﬂ.

Street Showed tbhat aspects of the theory of
monads cowd be carried out in a 2-category [22].

However, mMany aLSpectS reguire a richer se.ttina.



A FO"‘l"‘\ mMonadicity theorem

Theorem [Arkor & McDermott “25]

Let D—u—>E be a {:isht Morphism wn o VE
MM‘{.‘UV\S a\gebm o\o:‘ects For ronadsS.

w is monadic iff u admits a left adjoint

ond creates absolute colimits.

In Porticu\ar, this holds for enrichment 1n an
arbitrary mMonoidal category.



—W\e. Forma\\ theorie$ o(: presheaVeL and C.OComp‘e{:ionS

Two of the most -Fundanen\:al constructions iIn Ca\tesond
theory are the category of presheaves [€°F, Set] on

o Small cotegory C, and the free cocompletion
of a category under a class O of colimits,

Theorem [Arkor 3 MCDermott]

Under minimal assumptions on a class ® of
Weights in a VE, if a ®-presheal ob)ect exists,
it exhibits a Free. @-COCOMplel:ion.



Pa\rt V1. Future directions



hlew Fersped:ives on two-dimensional cateac_:_f:j the,ory

In the last SO years, the theory of 2- categories
and bicategorieS has been developed substantially,

As we have seen, reinterpreting these results from
the pe('SPQd:ive o(: Virtual double catesor'aes oftef\
leads to new insights, n addition to qucinj
everything in a cormon Lramework. .

However, there are Many topics left to treat.



Siome impgrtav\t airections
Below are some toe'\cs that | hope to See
o\e.ve.\o?e,o\ (further) In the Coming years,
| iits & colimits in VDCs  (cf. [Kawase ‘25])

e Monads on VDCs (CF. [Koudenbu\r_g])

o Forrmal cateaor5 tlﬂeorﬂ in symmetric VOC(s
(e.g. coend calculus)

e Ceneralised \oolﬂcateaoriQS (Cc [B“"""o".t ‘TS-D

e Enrichment n VD(s
® —Wsree—o\'umensiona\ StN\CJ:U\fe



Pa\rt YT . Conclusion



S S ummary

e Virtual double cateﬂories are an expressive
class of two-dimensional structures that

Subsume double cad:egories ana Mu\ticatejorie.s,

o The theory of VDCs s {:Sqica\\\ﬂ richer and
more well-behaved than that of 2-/bicategories,

e VDCs provid\e on ideal Sel:l:if\s in which to Stuo\y
formal categorﬂ theorg,

e Much femains to be done...
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