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What is a Proof?,

(And w\r\j shouwld we cowe].)

There are two traditiona reanings of the
term ‘oroof’ in mathematics.

Informal: an argument that swifices to convince

okher mokhematicians of the truth of some stotement

Forrmal: o derivation of some stotement from
OXYO™MS ond rwles n ocCcordance w'\\:\f\ o —formo\\ SyS‘tQM.



Conc.e?’c.u\o\\\v, an a\rswv\ent \S covwiv\cina 1
we loelieve we cowld, in theory, construct

0. corresponding forma) proof.

~ (B
0 T

natwrol lo\ngmge ZF(C), MLTT, eke.

A Formal prOOF 1S ent%rely rijorous, while an
informa\ Proor Q.f{e,n has some reaSOn'w\j le{t

implicit or ambiguous (‘abuses of notation’, etc.).



A COY\CQ(V\'\V\3 _ erob\eM

In Fra\c-\:ice) this conventional, informal
manner of proof works i\x\te well.
However, it 1S not perfect.

P

Often small mistakes slip by reviewers into
Pub\isheok work.

Sometimes rmuch \a\rser prob\ewxs...
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A b&rro wing tale

Kapranov and | decided that we know
what the definition should be and how to
prove the conjecture with this definition.

We wrote a paper with a sketch of the
proof and published it in one of the best
Russian mathematical journals and the
paper with the complete proof was
published in the proceedings of the
conference that | have been invited to.

Then in 2003, twelve years after our
proof was published in English, a preprint
appeared on the web in which his author,
Carlos Simpson, very politely claimed that
he has constructed a counter-example to
our theorem.

VoeVoo\sky

od -Sroupoid



| was busy with the work on the motivic
program and very sure that our proof is
correct and ignored the preprint.

And then in the Fall of 2013, less than a year ago, some sort of a block in my
mind collapsed and | suddenly understood that Carlos Simpson was correct
and that the proof which Kapranov and | published in 1991 is wrong.

Not only the proof was wrong but the main theorem of that paper was false!

(FrOM ‘HOW ‘ became mtefeS‘tzd n 'FOUI\th.\OV\S
makhermatics’ Voevodsky , 2014..)



A (partial) solution?

While some issues arise due to the nformal
nokwe of our eroofs, the \arjer issue 1§

humon Fo\\\'\\o\\‘\\:j.

Puk sam?\sj: humans make ristakes,



A (fmr’c\ al) solution 7._

While some issues arise due to the nformal
nokwe of our eroofs, the \arjer issue 1§

huwman F‘*\“’"‘\"tj-
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A (fmr’c\ al) solution 7._

While some isswes arise due to the informal
nakwe of our oroofs, the \arjer ssue 1S

human  fallibil ‘\\:\j .
Puk S'\M?\:.)'. humons make rnstakes,
How con we M'\\Z'\So\tg t\Wis iSSU\QZ A<

computer scientists there & an obvious
?Oten’c'\a\ solution...



COMPU\’(,QF - ver '\RQA Proof_s_

\I\W\Q\'. '\(' we cowld leave wf\k'\l\s Prgofs tFOF

humans,  but have the Froofs verified bg
o COMPU\’(.Q( [



COMP\A{U’ - ver '\FieA Proof_s_

\I\W\Q\Z \(’ we cowld leave wf'\\.'\l\s Prco{s tFOF

humans,  but have the f:roofs verified \og
o COMPU\‘\.QF [

Not only would this eliminate erroneus proofs,

it would also speed. wnp the Fruxstfm’d"g‘j
slow review proceSs, as human reviewers

would on\j \ove to evaluate the significance
and exposition of a paper, not LS correctness.



|f\ the ‘deal scenario, o COMP\AtQF counld

check a notwral \amsu\oge QFOOF, However, this
is a hard problem, So \t 1S reasonable to

stort with a smaller first step: verficakion

of formal proofs.



|f\ the ‘deal scenario, o COMP\AtQF counld

check a notwral \ansuase QFOOF, However, this
is a hard problem, So \t 1S reasonable to

stort with a smaller first step: verficakion

of formal proofs.

If we could solve this problem, then ‘all’

that would femain 1S to mechanise the

informal ~ formal step.



—\_\;\e cv;\est'\ovx of __-Found\oc\:ions

For computers therefore to validate
mathematical proofs, we need to decide

u\fon o 'Formq\ S\\jS’(.QM o{—‘ Proof,



—W\e %uest'\on o‘: __-Fou\nd\o&iof\s

For computers ktherefore to validote
mathematical FFOOFS, we need to decide
ufon ¢ § Formq\ sgsiem o{—‘ Proo{{

Which to choose!



“The ?/ue,st‘\ovx of foundakions

For computers therefore to validate
mathematical f”‘OOFS, we need to decide
u\for\ ¢ § Formq\ sgskem o{—‘ Proo{»‘,

Which to choosef

Tra\d'\t'\onallj, modern mathemoatics has been

based upon ZFC. Type theorists Moy instead.
odvocate a variant of Martin-Lof Type Theory.
“There are many options. ..



§ 5 ntdhelic mathem aX\CS

’W\ere 'S an alternative school o.‘: ‘Hﬂoujkt that
PfOPOSCS, mnstead O.r ey\codir\a e\;er:jﬂq'\na n o

Sil\s\e framework, which can lead to COMF'QX
ond obfuscated definitions, we ovxjht to
d:\rec’c\j oxiomakise the structwes we are interested

n.



§ 5 ntdhelic mathem aX\CS

’W\ere 'S an alternative school o.‘: ‘ﬂﬂoujkt that
proposes, instead of er\coo\ina everﬂ’(,\n'mj n O
SQAS\Q framework, w\'\'\C\n con \20\0\ to c_om.oiex
ond obfuscated definitions, we ovlent to
A\rec,’c\j oxiomakise the structwes we are interested
n.

For wnstonce, n svn{\r\eﬂc 3QoMetrv one oxiomatises
Po‘m’cs, ines, curves, etc. and their relationships, rather

than encoding these as subsels of points in a plane.



Sgﬂ‘\'.\f\e\:'\c mothematics often S\AijS‘\.S (or even

vForc,eS\ Mmore e\esow\t or concep’w\ad proo{:s than
Lroditiona) o‘na\‘ﬁt’\c mathematics .



Sg\t\r\a’c‘\c mothematics often S\AijS‘\.S (or even

forces) wmore e\esov\*. or concep{:.u\ad proofs than
Lroditiona) ana\3t%c mathematics .

What f we were %o Formu\ate o S‘:’Skew\ of
proo( taking synthetic Mmathematics sef'\OMS\gg

ln okther words, rather than imposing a specific
syster of Proo(l, provide the flexibility 4o wofk
withn  different Sgstems mccoro\3n3 t0 need.



To understand  this proposal, let ws
anolyse  Variows syskems of Pr‘oof, and\

.ld&nt.\‘(j ,t»‘ejr COMmOV\a\;‘HQS.



To understand  this proposal, let ws
ama\jse. Vorious  systems of Pr‘oo(f, ond\

.ld&nt.‘fj {Megr Commob’\a\;‘tieg.

In essence, Wwe shall see 4hat all can

be wnderskood to be built we from
deduckions of the form

?rem'\SSQS = conclusion

for different meonings of premiss oand conclusion,



E@uat\ona\ \03'\_3 /u\n'\verso.\ a\\seb(q

N
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(+ Rules 3overn'\n3 behaviowr of eq)m\'.\:a)



_E_q/vm’c'\ona\\ \03'\_3 /w\'\verso.\ a\\Seb(O\
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(Term forw\atio/\)
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__E_q/vm’c'\ona\ \03'\3 /W\'\VQJ‘SM a\Scb(a\

M (Term formatiol\)
1. "% s aderm

(Ez\m‘\it‘\jy

v S =§S

e \.-)

conclusion

(+ Rules 3overn'\n3 behaviowr of eq/m\}\:a)



E gumational logic / wnivessal _algebca

ea,’\‘\sses L "
N\ ; '— co o '_
‘ = (Term forw\atio/\)
CanC\\AS‘OU {(t\‘)‘“)*‘“\ l "t ‘5 o *‘Q_rm“

2 ) ! t\,\e {Q,N'\S
t and t' are

- ‘t‘ e tn .

(+ Rules 3overn'\n3 behaviowr of eq/m\'.\:a)



(+ Rules -For QZ\AQ\ity,
’/_—’A Substitution, weakening,

A ke

e, Ar Qs ete.)



(+ Rules for eguality,

"”,’_—TA Suwostitution, weakening,
eke.)



("’ Rules for ezv«q\ity, 1 . Contexts

”’—,——_—TA Suwostitution, weakening,
eke.)



m ("’ Rules for ezv«q\;ty, 1 . Contexts

Suwostitution, weakening, 2. Tﬂ?es
ete.)



("’ Rules for ezv«q\;ty, 1 . Contexts
2. Tvpes

Swbstitution, weakening,
ete.) S. Terms



('l' Rules -For ezu\q\;ty, 1 . Contexts

R ¢
e o0 AY A 5“\55\’.\\.\&\2301\, weakenins’ . 3?35
’ . etc.> 3 . Terms

4 E?/U\odﬂ.g



A&dgement structure

We said that deductions con be seen as
haw'mﬂ the form

ereM\SSQS = conclusion
but where premisses and conclusions con rmean
different things depending on the logic in guestion.

We shall call the ‘S\noxpe.' of a premiss or
conclusion a judﬁew\er\t.



For 'mstomc,e, N Qq/uxat'\ona\\ |03{g there are

two judgem ents :

1. s a term.
2. The terms __ ond __ are e%u\ad.

We May refrtsent thys  structwure with o ﬂmf’\"

E
()
T
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For 'mstomc,e, N Qq/uo\t'\ona\\ |03{g there are

two jndgem entS :

1. s a term.
2. The terms __ ond __ are 27/\»\0«\.

We Mov refrtsent thys  structwure with o 3“"?\"
eq/u\o\\\'ty or\\j moles sense

E
represents /L &W n bwe context of two

derwvokions of erms$
egualities T «— represeats derivations
of terms



In A (Simp\e) t:j?e ’C\r\eorv, there are four

jud&semen'tS%
1. __ s a context.
2. __ S a ‘t‘j?e.
S. _ s a term of ttjf’e — N context ___
A The terms® ___ and __ are e?/u\al.
We May represent this structure with o 3(&9\,\

'TS R,
CtXx e—"TTm ECI/
H r



In & (Aependent) type t\r\e.onj, there are four

jud&semenﬁ%
1. _ s o context.
2. __ S & ‘t‘j?e n cOn\’.QXt —_—
S. —— 1S a term of tmoe — N context -
A The terms® ___ and __ are eg/ual.
We MO\\’ refresent Hays  structwre with o 3(0\9\,\
| .
/—‘9 NG . (plus a Pautl«\ )
CtxXe—"Tm_Eq eguality condition

- r



A \')U\d\sQMQ,n’(. skeuncture s an oxc&cﬁc
cateqory with  finite fan-out.

’W\'\S means we have an ac:jc\\'c, airected
mult rmp\r\ n which we rMay declore certain

pa\'.\r\s ko coincide, closed wder composition, and

such that N
/{\}‘e\ Avays faite



Eochh veckex of a 3MA3QMQ¢\E stracture
defines o possible shopt for & premiss of

conclwsion. - = - -
"4 e - [.\

e o

N L——J‘(/’ ”””” 1

Each eo\ae defines the o\epeno\encies for the

respective premiss of conclwnsion.



\ nkuikion -‘:or \')udﬁemen kS

We con think of ;)\I\d\SQW\C/\tS os the different
structures a formal system of proof can talk

about.



\n’cu'\’c'\on -‘:or \')uéﬁementS

\I\,e con think O-(» ;)\N,\SQW\Cf\tS 0.5 ‘L\/\Q o\'\—fferent
structures a Formal System of proof can talk

about.
On the other hand, the rules describe how

we con form such structures. la general, a
e con asswme the existence of any of the

strwuciwres to forM o‘":j other structwre.



An aside on Mw\t\p\e conclusions

| am cons'\o\er'mj deductions with multiple

prermisses, but on\j o s%nj\e conclusionN.

This s becouse o deduction of the form

P\ - P,
C. .- Cm
1S eguivalent to a seguence of deductions
P --- P, P --- P,

CE—

C, C m



Deduction 53St€-MS

)w&aew\en’c skeuctures define the essential

structure of a ‘Fro\neuork for prooF . fhe
shages thot its premisse and conclusions can take.

A cule steuckue defines the possible
tQkQV\ 'tO ‘:QFM

Together, Ehese form a deduckion system,
which  defines a framework for proof.



Rule skructwre

To define a deductive rule, we must
Sgec'\(cj the structuwre of the premisses and

conclusioN.

For each, we declare a :Juxdsement, and
specify it dependencies.

—
L\

———————




\ e OXioM

Frem'\ss — ./\. ( Conclusion

1" ss’\’
FfQM\ /- conclusion

?.n pre.m SS



_W\e, t\neorﬂ O‘: o monoid oaction 1§ an extension
of wuniversal algebra. Hence, the judgement

structure 1S 3’\\10\ bsj
—\9 & TM «— EZ



_W\e ‘l’.\neor3 OF o monoid oaction s an extension
of wuniversal algebla. Hence, the judgement

structure 1S 3’\\10\ bsj
Ty Tm Eg

_\TAQ ru\e 'S reprasenteck b:.,
M
= — AN
M tj?e Tj
A
AN

A {:m)e Tﬂ



The rule

;..M'.f’\

Fm' M

FmMmxm M

'S rePrQSeAth by

>k
M/ \'
7\

' )
Tm(M) T T (M)
Twm (M)



'S rePrQSentecL by

>k
—> M/ \.

remiss I /
R % i

Tm (M) T

Conclusion



The rule

FmMm: M Fm' M

FmxmMm' M

'S rePrQSeAted by



The rule

FmMm: M Fm' M

FmxmMm' M

'S rePrQSentecL by

M/* .

| RN
Taln) T T (m)
T Tm (M)

/

o\epender\cies



e

\

'S rePrQSeAted by

kK
M/ \'
7\

|
Tr (M) T Twm (M)
Tm (M)

Twm(mM)



'S rePrQSeAted by

/.
M '/ \
Tm(M) 7 T (M)
o Tm (M)
\
T\M(M)

',“‘/ \
Tm M) E%(M,e*m,m)



The rule

‘.M’.f'\ I"QIA

- mea - A

'S rePrQSeAth by



“The shape of o rule

A rule structure is 3'\VQV\ bﬂ a hst of

rule trees. A rule tree is a binary tree with
| abelled \eaves. (The branches are \:ec.\m\‘\co\\lj
unlabelled, but we can thWink of them as be'mj
labelled by the names of the premisses.)

Each leaf is given by a judgerment, and oy
terms spetifYing the dependencies of that
3ud\36Ment.



We can think of a rule tree as on ogerator
on judxgamentS: the terms are built inductively

from the previous rnle trees. as well as the
priof bcanches of the preseat rule tree



We can think of a rule tree as an

on \')u\dxae,me.ntS: the terms are built ’mo\uctivelj

from the previous rule trees, as well as the
priof bcanches of the PFCSU\C rule tree,

for nstance -

pe 1 T Tm (A)

M/.\ MmeTm(M) aeTm(A)
| /N or

> = (meTrm(M)) = (@ :Tm(A))
— Tm(A)



We can think of a rule ¢ as an ogerator

on \')u\d\ae,w\entS: the a\re built 'n/\o\uct'uvelj

from the previous rule trees, as well as the
priof bcanches of the PI‘QSU\C rule tree,

for instance, in E%(M,exm,m\:
— M s the first cule tree.
— eXxmMm 1§ Formed ‘FfOM e, t\qe t\n'.r& cule trQQ',

m, the first branch: and >, the second
rule tree.

— m is the first branch.



ln other words, a term defined in a rule
kree con refer to any of the Fo\\owinj vertices:

In & sense to be clarified later, we can
represeat the list of rule trees as a Sinale tree:




1 think
' we wil

e. and this s how

\e tree,

o S’m&\e rwu

of thewm.

vhed bj
1S specifie
o deduction systew\
\AMMN‘:’, "
l::\uos 3'“?""““5 structw

./. \
daement R\A\Qtum !\. /\
() " M C | |
| l\ 4 \ ':S’:m%ture, stru /

2\
()



Proofs ond deduction 535{'.QMS

A prooF n a forma\ S&Ste"‘ of P’o"(: 1S 3'|ven
by Sra\(?ting deductive rules,

d

O Soc
e (O T T
1 1

1




Proofs ond deduction sgstems

A ?rooF n a forMQI 535{:0" of Proo(‘ 1S 3'|ven
by Sra\(?ting deductive rules,

| - -
31 3 —
R

1

ThiS  corresponds precisely to term formation in
the correspono\if\s rule structure,



A Cu\rrj-—Howwo\ correSpono\enE

This idea that proofs correspond to terms s
on old 1dea a tﬂ?‘ 't\neorj, ond the structwe

of deduction g\\)s\;e,ms con be seen to
c.orres?ono\ to a certain tgee theoruj.



Recall that rule trees are defined to be
a\r\o'\trou‘j b'mwv trees, but our examples all have

o certain form...

What about Ff‘em'\SS /\ _— conclusion

other branching
/4
structures © 1“ Y
FremSS — Conclusion
) /’ ° o
2" oremiss



H 33\r\ er-order rules

ﬁ

An operad. has, for each nelN, o,
n—o\r3 o?era\’cor

FE,:O - Fta:O

M A
| ®n(£\ 9y ) \"“\ -0
'Vraw\'n{:'\onou\\j, this s viewed o5 an axiom scheme:

on nfinite ‘Fom%\g of operakors. However, we moy
more ?.\QDomt\y view this o5 o Ir\'\s\ner-oro\er operator.



Let ws rewrite
\'t\.'o *e e "tn..o

‘____—_—_———__——-

F ®. k..., kn) 2 O
oS /l: 1S now pammeterised
X:IN F£t-O (interna\y) bj an wn

F®(x.t): O



Let ws rewrite
\'t\.'o *e - "tn..o

‘____—_—_———__——-

F ®. k..., kn) 2 O

OS5 /‘: 1S now pa\mmeterised
x:N Ft:0 (internally) by an n
F®(x.t): O

We coan represeat this as a rule tree:
this premss ®
NN
has its own oremissa N TmlO) Tm(0)



A rule tree with complex \oromc\n'.nj Corresponds
to a h'\j\ner-oro\er rule: o rule whose premisses

con be other rules.

A tree /i\\ con be t\nouslnt oF as an
1,3

¢ s

operator (1 —72—3)—4—05.
e pr—

In'\s\ner-oro\er



A rule tree with cow\e\cx bromdﬂ'ﬂ’\j CoN‘CS?ono\S
ko a \r\'\s\f\er-oro\er rule: o rule whose premisses

con be other rules.

A tree /g\\\ con be t\r\ouslnt oF as an
L3

¢ S

operator (1 —2—3)—4—05.
S —

h'\s\ner-oro\er

However, n typical logics, it is unusual to see
operators with order > 3.



So what ¢

We have o definition of deduction stjstew\

that coptwes many systers of proof. This
1s all aood\ ond well t\neore.’ucox\\g but s it

usefu Prac’u call 3



So what ¢

We have o definition of deduction stjstew\

that co\p’cwes Mmﬂj 533’(,0"\8 of PFOOF. This
1s all aood\ ond well t\neore,’cicox\\g’ but s it

usefw Pract\ call 37

C\nec.\r(if\j a term 1S well-formed in a deduction
535tem i§ eguiva\ent to chec\(inj o proof in the

S‘NQV\ system of Pr oof. So an iw\p\ementatioa of

o. validation a\ﬁorit\'\m for deduction s:jstems gives
us a way +to Mechan'.c.a\\3 verify proofs.



In -Fa\d., oo POSSi’o\e to \mp'er\er\t an
a\jorithm for Vm\io\atiAS Adeduction 533*.048
very conc‘\se\j (~ 200 lines of Rust).



In -Fa\d., oo POSSi’o\e to \mp'er\er\t an
a\jorithm for Vm\io\atiAS Adeduction 533*.048
very conc‘\se\j (~ 200 lines of Rust).

This mokes it feasible to prowve correctness
of on implementation, and. encourages
rmultiple imp\ementations — Somet\n'ms that

s not 3Qy\e['&“3 true for other computer

proof systems.



{DQYV\O- tume
(W time permits)




Relation to existing proof _assistants

—W\ere ex\st sjstems for Mechamica\\ﬂ Verifﬁ“‘j
PfOOFS, whichh are a\rQO\d\\j wsea bﬂ some
mathematicions . Aﬁo\m' Coq, Leon,
Isabelle , etc.

However the aPPanC\r\ | hove presented\ has
Several strensﬂns over these s:.,s’cems



— Ex'\st'w\3 Sgstew\s tend to choose o single
S}jSU?—M of Proof, 9'|vinj therm less ‘ﬂex'\'o\ht&,
and. feguiring defimtions and theoremg to be
encooed.

— Conse@u\e/\t\y) the sjsteMS are. not inter-
Comeat'\b\ez a theorem proven in one

Sgstem connot be used in another,

— TThese f:l‘oof Sgstems e COMF\QX, rezv\'.rmj
\arse ?roo(: keme\s, which are hard to verify.



Next steps (112)

The Strenjtk in the definition of deduction
SﬂStelM 1s WS S.\MP\iCitj ond expreSSivil:B.
However, n practice, this S‘MP,{Citj has a

drawbock :  complex definitions and proofs can
be tiresome to write ond read, because

evefﬂt\n'\ﬂa IS ex?\'\c'\\:.

We would ke o \nij\r\er-r\evel \o\nﬂtmﬁe to
Man'\pulod:e deduction sgstems.



Next steps (212)
Just as crucial are the theoretical aseects :
how can we be confident that deduckion

systems are well-behoved : in other words; that
t\ney ore o Sensible mathematical structure for

Proof?

Deduction stjstems con be 3'|ven o cqtesor%ca\
semontiCS in  structwres related to \oca\\y

cartesion - closed Catesor'ueS, which in a suitoble
sense justifies their = study.



Conclusion

o Compu\te,rs have the FOth\t'la' ‘to '.MFfoVQ. the
Way We do mathematics through proof verification.

e A synt\neh'\c Persf;e.c{'\\le. on mothematics leads

naturally to a highly
53stem . which captwres
of Proof.

e Deduction sgstems can be imP\ew\ented very
concisely, mawing them an ideol proof kernel cand idate.

ex‘pressive formal deductive
IMO\V\3 existil\s Systems



Epilogue
There 1§ much more hat con be Said fejoro\inj
this formalism, f:a\rl:icv\\osr\\\j o S re\ationskig to
other deas, e.9.
— ()\-—Q‘ee,) \o&'\ca\ -meeuorks
— Contextual cateaories
— T‘:)Qe t\ne,orj wn tﬂf’e ’(.\ne.orj

buk g recl/m';res more baxdnsrow\c& thoan | have
kime for here. so | shall Simp\:’ mention them,



